Miscellaneous files for experimentation¶
Iterative Closest Point (ICP) SLAM example
author: Atsushi Sakai (@Atsushi_twi)
-
misc.iterative_closest_point.
ICP_matching
(ppoints, cpoints, time)[source]¶ Iterative Closest Point matching
- input
ppoints: 2D points in the previous frame cpoints: 2D points in the current frame
- output
R: Rotation matrix T: Translation vector
-
misc.iterative_closest_point.
SVD_motion_estimation
(ppoints, cpoints)[source]¶ performs single value decomposition to determine rotation and translation
- input
ppoints: 2D points in the previous frame cpoints: 2D points in the current frame
- output
R: rotation angle t: translation
-
misc.iterative_closest_point.
nearest_neighbor_assosiation
(ppoints, cpoints)[source]¶ Associates new LIDAR points with previous LIDAR points
- input
ppoints: 2D points in the previous frame cpoints: 2D points in the current frame
- output
inds: indices error: normalized difference in current and previous 2D points
-
misc.iterative_closest_point.
update_homogeneous_matrix
(Hin, R, T)[source]¶ Update the homogeneous matrix (translation and rotation matrices combined)
- input
Hin: initial/previous homogeneous matrix R: rotation matrix T: Translation matrix
- output
H: updated homogeneous matrix
- H
- The updated homogeneous matrix.
- Hin
- The initial/previous homogeneous matrix.
- R
- The rotation matrix.
- T
- The translation matrix.